Probabilistic kernel regression models

نویسندگان

  • Tommi S. Jaakkola
  • David Haussler
چکیده

We introduce a class of exible conditional probability models and techniques for classi cation regression problems Many existing methods such as generalized linear models and support vector machines are subsumed under this class The exibility of this class of techniques comes from the use of kernel functions as in support vector machines and the generality from dual formulations of stan dard regression models

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least-squares Probabilistic Classifier: a Computationally Efficient Alternative to Kernel Logistic Regression

The least-squares probabilistic classifier (LSPC) is a computationally efficient alternative to kernel logistic regression (KLR). A key idea for the speedup is that, unlike KLR that uses maximum likelihood estimation for a log-linear model, LSPC uses least-squares estimation for a linear model. This allows us to obtain a global solution analytically in a classwise manner. In exchange for the sp...

متن کامل

Support vector regression with random output variable and probabilistic constraints

Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...

متن کامل

Multiple Kernel Learning: A Unifying Probabilistic Viewpoint Multiple Kernel Learning: A Unifying Probabilistic Viewpoint

We present a probabilistic viewpoint to multiple kernel learning unifying well-known regularised risk approaches and recent advances in approximate Bayesian inference relaxations. The framework proposes a general objective function suitable for regression, robust regression and classi cation that is lower bound of the marginal likelihood and contains many regularised risk approaches as special ...

متن کامل

Discriminative Learning via Semidefinite Probabilistic Models

Discriminative linear models are a popular tool in machine learning. These can be generally divided into two types: linear classifiers, such as support vector machines (SVMs), which are well studied and provide stateof-the-art results, and probabilistic models such as logistic regression. One shortcoming of SVMs is that their output (known as the ”margin”) is not calibrated, so that it is diffi...

متن کامل

Probabilistic Regression Using Basis Function Models ; CU-CS-975-04

Our goal is to accurately estimate the error in any prediction of a regression model. We propose a probabilistic regression framework for basis function regression models, which includes widely used kernel methods such as support vector machines and nonlinear ridge regression. The framework outputs a point specific estimate of the probability that the true regression surface lies between two us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999